La Primera Ley de la Termodinámica o Primer Principio de la Termodinámica se postula a partir del siguiente hecho experimental:
En un sistema cerrado adiabático que evoluciona de un estado inicial A a otro estado final B, el trabajo realizado no depende ni del tipo de trabajo ni del proceso seguido.
Este enunciado supone formalmente definido el concepto de trabajo termodinámico, y sabido que los sistemas termodinámicos sólo pueden interaccionar de tres formas diferentes (interacción material, interacción en forma de trabajo e interacción térmica). En general, el trabajo es una magnitud física que no es una variable de estado del sistema, dado que depende del proceso seguido por dicho sistema. Este hecho experimental, por el contrario, muestra que para los sistemas cerrados adiabáticos, el trabajo no va a depender del proceso, sino tan solo de los estados inicial y final. En consecuencia, podrá ser identificado con la variación de una nueva variable de estado de dichos sistemas, definida como Energía.
Se define entonces la EnergíaU, ,como una variable de estado cuya variación en un proceso adiabático es el trabajo intercambiado por el sistema con su entorno:
deltaU=+W
Cuando el sistema cerrado evoluciona del estado inicial A al estado final B pero por un proceso no adiabático, la variación de la Energía debe ser la misma, sin embargo, ahora, el trabajo intercambiado será diferente del trabajo adiabático anterior. La diferencia entre ambos trabajos debe haberse realizado por medio de interacción térmica. Se define entonces la cantidad de energía térmica intercambiada Q (calor) como:
Q=deltaU-W
Esta definición suele identificarse con la ley de la conservación de la energía y, a su vez, identifica el calor como una transferencia de energía. Es por ello que la ley de la conservación de la energía se utilice, fundamentalmente por simplicidad, como uno de los enunciados de la primera ley de la termodinámica:
La variación de energía de un sistema termodinámico cerrado es igual a la diferencia entre la cantidad de calor y la cantidad de trabajo intercambiados por el sistema con sus alrededores.
En su forma matemática más sencilla se puede escribir para cualquier sistema cerrado:
deltaU=Q+W
donde:
deltaU= es la variación de energía del sistema,
Q= es el calor intercambiado por el sistema, y
W=es el trabajo intercambiado por el sistema a sus alrededores.
viernes, 12 de marzo de 2010
viernes, 5 de marzo de 2010
1er resumen (tercer parcial)
CANTIDAD DE CALOR Y PROPIEDADES
TERMICAS DE LA MATERIA
¿Que es Calor?
Es el nombre de una de las formas que puede adoptar la energía. Hasta el siglo 19 se consideraba que el calor era un material sin peso. De acuerdo con la concepción actual, el calor es la Energía Cinética de las partículas atómicas.
Cantidad de Calor y medida:
Si se agita un recipiente con agua, se puede comprobar con un termómetro muy sensible, que se produce un aumento de temperatura. Este cambio se interpreta como un aumento de la energía Cinética de las moléculas a causa de su mayor agitación. Se ha hecho un trabajo sobre el sistema que incide en el aumento de energía interna haciendo que las moléculas se muevan con mayor rapidez, lo cual se traduce en una mayor temperatura del sistema.
Si se agita un recipiente con agua, se puede comprobar con un termómetro muy sensible, que se produce un aumento de temperatura. Este cambio se interpreta como un aumento de la energía Cinética de las moléculas a causa de su mayor agitación. Se ha hecho un trabajo sobre el sistema que incide en el aumento de energía interna haciendo que las moléculas se muevan con mayor rapidez, lo cual se traduce en una mayor temperatura del sistema.
Calor Especifico:
Es la energía térmica necesaria pera efectuar el cambio de fase de una sustancia, a temperatura constante. Cantidad de calor que hay que suministrar a la unidad de masa de la sustancia para elevar su temperatura en un grado. Se definen calores específicos a presión constante y a volumen constante, representados ambos por Cp y Cv, dependientes ambos de la temperatura.
Es la energía térmica necesaria pera efectuar el cambio de fase de una sustancia, a temperatura constante. Cantidad de calor que hay que suministrar a la unidad de masa de la sustancia para elevar su temperatura en un grado. Se definen calores específicos a presión constante y a volumen constante, representados ambos por Cp y Cv, dependientes ambos de la temperatura.
Gases Ideales:
El Gas Ideal, es aquel que cumple estrictamente con las leyes enunciadas por Boyle, Charles; etc. y el principio de Avogadro.
El Gas Ideal, es aquel que cumple estrictamente con las leyes enunciadas por Boyle, Charles; etc. y el principio de Avogadro.
En un intento de comprender porque la relación PV / T, es constante para todos los gases, los científicos crear un modelo de Gas Ideal. los supuestos relativos a este son los siguientes:
-Todas las moléculas del gas ideal, tienen las mismas masas y se mueven al azar.
-Las moléculas son muy pequeñas y la distancia entre las mismas es muy grande.
-Entre las moléculas, no actúa ninguna fuerza, y en el único caso en que se influyen unas a otras es cuando chocan.
-Cuando una molécula choca con la pared del continente o con otra molécula, no hay perdida de energía cinética.
-La fuerza gravitatoria, que ejerce la tierra sobre las moléculas, se considera despreciable por lo que a su efecto sobre el movimiento de las moléculas se refiere.
-Las moléculas se mueven a tal velocidad que chocan con la pared del continente o entre sí antes de que la gravedad pueda influir de modo apreciable en su movimiento.
Ley General de los Gases:
En las leyes estudiadas hasta el momento, intervienen siempre dos variables y una constante. Esta ley enseña la manera como se comporta un gas ideal bajo cualquier condición de volumen, temperatura y presión. esta ley es la combinación de las leyes de Boyle, Charles y Gay-Lussac, expresándose de la siguiente manera:
V1 P1 = V2 P2
T1 T2
En las leyes estudiadas hasta el momento, intervienen siempre dos variables y una constante. Esta ley enseña la manera como se comporta un gas ideal bajo cualquier condición de volumen, temperatura y presión. esta ley es la combinación de las leyes de Boyle, Charles y Gay-Lussac, expresándose de la siguiente manera:
V1 P1 = V2 P2
T1 T2
Ley del Gas Ideal:
Son entonces cuatro las variables que determinan el estado de un gas:
“V, n, P, T”. El volumen esta condicionado por las otras tres variables. Si se reúnen las leyes de Boyle, Charles y Avogadro en una sola, se obtiene:
V = R 1 (T)(n), entonces reagrupando PV = nRT.
p
La constante R es la constante universal de los gases y es igual a:
0,082 litros. atm/mol.k y es independiente de la naturaleza del gas.
lunes, 1 de marzo de 2010
Suscribirse a:
Entradas (Atom)